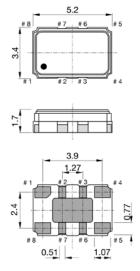
TX5S-STR3

STRATUM-III, high reliable, accurate, analogue temperature compensated (VC)TCXO


Generic specification

Frequency range	5.000 ~ 50.000	МН	z		
Standard frequencies (fundamental)	5, 10, 12, 12.8, 13, 14.4, 1 25, 26, 32, 32.768, 38.88,			20, 24, 24.576,	
Frequency stability:	≤ ±4.6 ppm ove		erall	(Note #1)	
vs. temperature referenced to (FMAX+FMIN)/2	≤ ±0.28 ppm	ove	er -40 to +85 °C	(*)	
Holdover stability	≤ ±0.37 ppm				
vs. aging @ +40 °C	≤ ±0.6 ppm 1 st year				
Frequency tolerance ex. factory	0 ~ +1.0 ppm @ +25 °C				
Supply voltage	+2.5 V to +3.3 V			(*)	
Output signal	Clipped sine wave		CMOS	(*	•)
Output level	> 0.8 Vp-p		V _{OH} > 0.9*Vcc	/ V _{OL} < 0.1*V	/cc
Output load	10 kΩ // 10 pF		15 pF	M	lax.
Current consumption, depending on frequency	5 < mA		< 8 mA		
Electronic Frequency Control (EFC)	$\Delta F = \pm 5 \text{ ppm}$	posi	tive slope	(*)	
Control voltage (Vc)	+1.50 V ±1.0 V			(*)	
EFC input impedance	> 100 kΩ				
Phase noise (typical value for 20 MHz)	-95 dBc/Hz -120 dBc/Hz -140 dBc/Hz -155 dBc/Hz -155 dBc/Hz	0 0 0 0	10 Hz 100 Hz 1 kHz 10 kHz 100 kHz		
Operating temperature range	-40 ~ +85 °C			(*)	
Storage temperature range	-55 ~ +105 °C				
Reflow Profiles as per IPC/JEDEC J-STD-020C	≤ 260 °C over 10 sec. Max.				
Moisture sensitivity	Level 1 (unlimited)				

(*) See available options on page #2

Note: Unless otherwise specified conditions are @+25 °C

Note #1: Including, frequency stability vs. temperature, tolerance @+25°C, aging 20 years, supply & load variation Note #2: Constant temperature, supply and load change of ±5 % and aging over 24 hours

QuartzCom AG

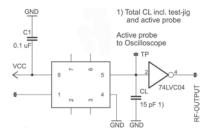
Switzerland

Bruehlstrasse 15

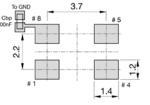
CH 2540 Grenchen

Pin function

1 Vc (EFC) for VC-TCXO GND or NC for TCXO

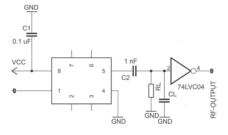

#4 GND #5 OUTPUT

#5 OUTPUT


#8 Vcc

Do not connect #2, #3, #6 and #7

Test circuit for CMOS



Soldering pattern

Test circuit for CSW

2011/65/EU RoHS compliant

Fax +41 32 644 24 05
Tel +41 32 644 24 00
E-Mail sales@quartzcom.com
www.quartzcom.com

Page 1 of 3 26 Nov. 22
From design to production in Switzerland

TX5S-STR3

STRATUM-III, high reliable, accurate, analogue temperature compensated (VC)TCXO

Generic specification

Ordering code

Oscillator type

(0)5S-(1)(2)-(3)(4)-(5)(7)-STR3-40.000MHz Example: TX5S-H33-NNu28-STR3-40.000MHz

(3) Operating temperature (4) Frequency stability (5) Pulling range (VT only)

(1) Output signal

 $JK = -20 \text{ to } +70 \,^{\circ}\text{C}$ $u28 = \pm 0.28 \, \text{ppm}$ $V05 = 1.5 \pm 1.0 \,^{\circ}\text{V}$ $v=1.5 \pm 1.0 \,^{\circ}\text{C}$ $v=1.5 \pm 1.0 \,^{\circ}\text{C}$

Z = special spec

(2) Supply voltage

Environmental conditions

Test	IEC 60068 Part	IEC 60679-1 Clause	MIL-STD- 202G Method	MIL-STD- 810F Method	MIL-PRF- 55310D Clause	Test conditions (IEC)
Sealing tests (if applicable)	2-17	5.6.2	112E		3.6.1.2	Gross leak: Test Qc, Fine leak: Test Qk
Solderability Resistance to soldering heat	2-20 2-58	5.6.3	208H 210F		3.6.52 3.6.48	Test Ta method 1, Test Td ₁ method 2, Test Td ₂ method 2
Shock *	2-27	5.6.8	213B Cond C	516.4	3.6.40	Test Ea, 3 x per axis 100 g, 6 ms half-sine pulse
Vibration, sinusoidal*	2-6	5.6.7.1	204D Cond A	516.4-4	3.6.38.1 3.6.38.2	Test Fc, 30 min per axis, 10 Hz – 55 Hz 0,75 mm; 55 Hz – 2 kHz, 10 g
Vibration, random*	2-64	5.6.7.3	214A	514.5	3.6.38.3 3.6.38.4	Test Fdb
Endurance tests - ageing - extended ageing		5.7.1 5.7.2	108A		4.8.35	30 days @ 85 °C 1000 h, 2000 h, 8000 h @ 85 °C

Other environmental conditions on request

28 Dec. 20

26 Nov. 22

Page 2 of 3

QuartzCom AG

TX5S-STR3

STRATUM-III, high reliable, accurate, analogue temperature compensated (VC)TCXO

Generic specification

Handling Recommendation for SMD Crystal & Crystal Oscillator

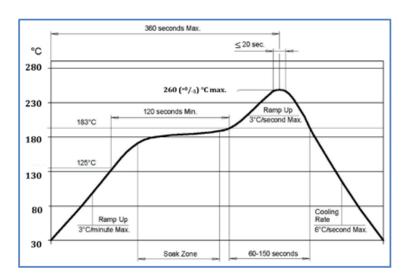
1. ESD Handling

Crystal oscillators are electrostatic sensitive device. Therefore, direct touching of the terminals with fingers and without ESD precautions must be avoid.

Proper handling must be made according to the established ESD handling rules IEC 61340-5-1 and EN 100015-1 to avoid degradations of the oscillator performance due to damages of the internal circuitry by electrostatic discharge.

2. Shocks & Vibrations

Excessive mechanical shocks and or vibrations during handling as well as manual and automatic assembly must be avoided.


If accidently, the component was dropped or subject to strong shock, component should be verified that the electrical function is still within the specification and still hermetically sealed.

3. Thermal Shocks

Avoid steep temperature gradients. It might lead to breakage of the crystal blank Infrared reflow processes in general are safe.

4. Soldering & Cleaning

Maximum Reflow Condition in accordance with JEDEC STD-020C

Avoid washing or welding processes using Ultrasonic energy. These processes can damage the crystal due to mechanical resonance of the crystal blanks.

5. Coating

Using resin may have an impact on the oscillator characteristics.

If resin is used, please contact QuartzCom or our representative for more information.

In situations where resin would be used without contacting us in advance,

QuartzCom will not be responsible for any damages caused to the components or and injuries caused to people.

2011/65/EU RoHS compliant

Fax +41 32 644 24 05 Tel +41 32 644 24 00 E-Mail sales@quartzcom.com From design to production in Switzerland

26 Nov. 22

Page 3 of 3